Takano’s Theory of Quantum Painlevé Equations

نویسنده

  • Yuichi UENO
چکیده

Recently, a quantum version of Painlevé equations from the point of view of their symmetries was proposed by H. Nagoya. These quantum Painlevé equations can be written as Hamiltonian systems with a (noncommutative) polynomial Hamiltonian HJ. We give a characterization of the quantum Painlevé equations by certain holomorphic properties. Namely, we introduce canonical transformations such that the Painlevé Hamiltonian system is again transformed into a polynomial Hamiltonian system, and we show that the Hamiltonian can be uniquely characterized through this holomorphic property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Painlevé transcendents in two-dimensional topological field theory

Introduction Lecture 1. Algebraic properties of correlators in 2D topological field theory. Moduli of a 2D TFT and WDVV equations of associativity. Lecture 2. Equations of associativity and Frobenius manifolds. Deformed flat connection and its monodromy at the origin. Lecture 3. Semisimplicity and canonical coordinates. Lecture 4. Classification of semisimple Frobenius manifolds. Lecture 5. Mon...

متن کامل

Quantizing the Bäcklund transformations of Painlevé equations and the quantum discrete Painlevé VI equation

Based on the works by Kajiwara, Noumi and Yamada, we propose a canonically quantized version of the rational Weyl group representation which originally arose as “symmetries” or the Bäcklund transformations in Painlevé equations. We thereby propose a quantization of discrete Painlevé VI equation as a discrete Hamiltonian flow commuting with the action of W (D (1) 4 ). 1

متن کامل

Painlevé transcendents and two-dimensional topological field theory

Introduction Lecture 1. Algebraic properties of correlators in 2D topological field theory. Moduli of a 2D TFT and WDVV equations of associativity. Lecture 2. Equations of associativity and Frobenius manifolds. Deformed flat connection and its monodromy at the origin. Lecture 3. Semisimplicity and canonical coordinates. Lecture 4. Classification of semisimple Frobenius manifolds. Lecture 5. Mon...

متن کامل

Spectral curves and discrete Painlevé equations

It is well known that isomonodromic deformations admit a Hamiltonian description. These Hamiltonians appear as coefficients of the characteristic equations of their Lax matrices, which define spectral curves for linear systems of differential and difference systems. The characteristic equations in the case of the associated linear problems for various discrete Painlevé equations is biquadratic ...

متن کامل

Local Cohomology of Generalized Okamoto–painlevé Pairs and Painlevé Equations

In the theory of deformation of Okamoto-Painlevé pair (S, Y ), a local cohomology group H D (ΘS(− logD)) plays an important role. In this paper, we estimate the local cohomology group of pair (S, Y ) for several types, and obtain the following results. For a pair (S, Y ) corresponding to the space of initial conditions of the Painlevé equations, we show that the local cohomology group H D (ΘS(−...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008